A model of computation and representation in the brain

نویسنده

  • James S. Albus
چکیده

The brain is first and foremost a control system that is capable of building an internal representation of the external world, and using this representation to make decisions, set goals and priorities, formulate plans, and control behavior with intent to achieve its goals. The internal representation is distributed throughout the brain in two forms: 1) firmware embedded in synaptic connections and axon-dendrite circuitry, and 2) dynamic state variables encoded in the firing rates of neurons in computational loops in the spinal cord, midbrain, subcortical nuclei, and arrays cortical columns. It assumes that clusters and arrays of neurons are capable of computing logical predicates, smooth arithmetic functions, and matrix transformations over a space defined by large input vectors and arrays. Feedback from output to input of these neural computational units enable them to function as finite-state-automata (fsa), Markov Decision Processes (MDP), or delay lines in 1 The majority of this paper was written while the author was an employee of the National Institute of Standards and Technology. Therefore, this document is not subject to copyright. Information Sciences 180 (2010) 1519–1554 2 processing signals and generating strings and grammars. Thus, clusters of neurons are capable of parsing and generating language, decomposing tasks, generating plans, and executing scripts. In the cortex, neurons are arranged in arrays of cortical columns that interact in tight loops with their underlying subcortical nuclei. It is hypothesized that these circuits compute sophisticated mathematical and logical functions that maintain and use complex abstract data structures. It is proposed that cortical hypercolumns together with their underlying thalamic nuclei can be modeled as a Cortical Computational Unit (CCU) consisting of a frame-like data structure (containing attributes and pointers) plus the computational processes and mechanisms required to maintain it and use it for perception cognition, and sensorymotor behavior. In sensory-processing areas of the brain, CCU processes enable focus of attention, segmentation, grouping, and classification. Pointers stored in CCU frames define relationships that link pixels and signals to objects and events in situations and episodes. CCU frame pointers also link objects and events to class prototypes and overlay them with meaning and emotional values. In behaviorgenerating areas of the brain, CCU processes make decisions, set goals and priorities, generate plans, and control behavior. In general, CCU pointers are used to define rules, grammars, procedures, plans, and behaviors. CCU pointers also define abstract data structures analogous to lists, frames, objects, classes, rules, plans, and semantic nets. It is suggested that it may be possible to reverse engineer the human brain at the CCU level of fidelity using next-generation massively parallel computer hardware and software.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

پیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی

Optimization of machining parameters is very important and the main goal in every machining process. Surface finishing prediction is a pre-requirement to establish a center for automatic machining operations. In this research, a neuro-fuzzy approach is used in order to model and predict the surface roughness in dry turning. This approach has both the learning capability of neural network and li...

متن کامل

Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion

In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

Neuronal basis of tactile sense in the rat whisker system

Using their whiskers, rats have tactile capacities rivaling those of the human with our fingertips. We have carried out experiments to explore how neurons encode touch signals to build up a central representation. Touch signals begin with the receptors in the follicle of each whisker and can be traced to a columnar module in somatosensory cortex that is connected with the same whisker: the well...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2010